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Abstract--Submerged gas injection into liquids is a widely applied processing technique. At low gas flow 
rates, a bubble plume forms in the liquid. With increasing gas flow rates, the gas bubbles in the plume 
coalesce and a gas jet is formed. Transition from bubbling to jetting occurs in the transonic region. 
To date, there is no sufficient theoretical explanation for this transition. In this paper, a basic theory is 
developed to explain the transition from bubbling to jetting. The instability of a circular compressible gas 
jet in a liquid was studied. For the axisymmetric mode, it was found that there is a peak growth rate for 
both the temporal and spatial instabilities when the Mach number approaches unity. The instability 
quickly reduces to vanishing values at supersonic gas velocities. However, in the supersonic region, it was 
shown that the helical instability mode may become important. Gas pressure perturbations have a 
destabilizing effect in the subsonic region but a stabilizing effect in the supersonic region. The problem 
of absolute instability was studied in order to explain the physical phenomenon of the transition from 
bubbling to jetting. Absolute instability was found in the subsonic region and a gas jet always breaks up 
into bubbles in the subsonic region. No absolute instability was found in the supersonic region, and the 
gas jet may remain stable. This transition from absolute to non-absolute instability occurs in the transonic 
region which was observed to be the transition from bubbling to jetting. © 1997 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

The process of submerged gas injected into a liquid environment is described in figure 1. This is 
important in metallurgical processes, which involve high temperatures. Submerged bubbling/jetting 
is employed to enhance heat and mass transfer rates by producing large interfacial areas. The whole 
gas-stirred injection zone consists of several regions, a gas bubbling or jetting core, a two-phase 
turbulent zone of gas dispersed in liquid, a liquid recirculating zone, and sloshing waves formed 
on the surface of the bath when the gas flow rate is high enough. 

With increased gas injection flow rate, a transition from bubbling to jetting occurs when the 
bubbles in the plume coalesce, thus a gas jet is formed. In the initial jetting regime, the gas jet does 
not disintegrate until it reaches some distance from the nozzle, where the jet breaks up into a 
column of rising bubbles. The transition between bubbling and jetting can be identified. There is 
a change in the sound generated by the gas flow. Jetting corresponds to a high frequency sound 
while bubbling is characterized by a deep, low frequency sound (Payne and Prince 1975). Also the 
bubbling is seen to expand radially from the injector and essentially no expansion is seen in the 
jetting regime (Ozawa and Mori 1983). 

McNallen and King (1982) tested the injection of different inert gases into water and liquid 
metals and concluded a criteria for transition to jetting nozzle exit mass flux of about 40 g/cm 2 s. 
This value corresponds to sonic injection in an air-water system at environmental pressure. Ozawa 
and Mori (1983) stated that the transition from bubbling to jetting takes place when the nominal 
Mach number at the injection nozzle exit approaches unity. They used the ratio of the time during 
which the basal diameter of bubbles or jets is in apparent contact with the orifice diameter to a 
total observing time. There is an abrupt reduction of time fraction of contact at the transonic 
region. The phenomenon is similar both for gas injected into water and mercury. Ozawa and Mori 
did not give a theoretical explanation on the transition from bubbling to jetting. Koria (1993) 
presented a simple structure model and calculated the non-buoyant jet length. He concluded that 
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Figure  1. Submerged  b lowing  of  a gas  in to  a l iquid in meta l lurg ica l  processes.  

for injection velocities of M < 1, the gas jet disintegrates in the form of bubbles very close to the 
gas injecting orifice, and a bubble column forms in a metal bath. For M > 1, the length of 
the non-buoyant jet in the bath is appreciable and the jet disintegrates later into bubbles. 

The transition from gas bubbling to jetting is very important because high gas injection velocity 
is necessary to obstruct liquid accretion formation on the tip of the injection nozzle and to prevent 
the phenomenon of gas back attack, but jetting may reduce the reactant interfacial contact area 
and gas residence time, thus reducing heat and mass transfer between the phases. However, there 
is little fundamental explanation presented with regard to these important phenomena. The present 
research is focusing on improving the current theoretical understanding of the transition from 
bubbling to jetting. 

2. MATHEMATICAL MODEL 

There are two ways to consider the mathematical model of gas bubbling or jetting into a 
liquid bath. As gas injection flow rates increase from small values, the bubble frequency is 
increasing. The bubbles form, rise, coalesce or break up to form a relatively stable bubble plume. 
Prince and Blanch (1990) proposed a model to calculate the rates of bubble coalescence and bubble 
breakup in turbulent gas-liquid dispersions. They used the Monte Carlo simulation for the 
experimental measurements of coalescence and breakup events. However, Prince and Blanch's 
calculations and experiments were at low gas flow rates, which are far from the sonic region. This 
model cannot be extrapolated to predict the transition from gas bubbling to jetting. Zhao and Irons 
(1989) gave a theoretical explanation for the transition from gas bubbling to jetting. They argued 
that the breakup of large bubbles cause by Raleigh-Taylor and Kelvin-Helmholtz instability will 
entrain liquid droplets into the gas. Finally, the gas flows continuously and jetting occurs. However, 
their fundamental theory can be questioned because it was based on single bubble breakup, yet 
it is not observed that the bubbles at the orifice first break up into many small bubbles before 
coalescing to form a jet. 

In our approach, we consider a gas jet at sufficiently high gas flow rates. If we reduce the gas 
flow rate, the gas jet may break up into bubbles. Little research work has been reported for a 
high-velocity compressible gas jet in a liquid environment. Theoretical analysis can be resorted to 
give a characteristic description of the gas jet breakup. Instability theory is used here which deals 
with the interfacial waves without consideration of liquid entrainment. C.mng and Russel (1965) 
did linear subsonic and supersonic analyses respectively for a specific gas-liquid system. In their 
study, the sonic point was identified as a singularity (infinite growth rate), and the wave velocity 
of the disturbance was assumed to be negligible. Chawla (1975) included a non-zero wave velocity 
in his study of the stability of a sonic gas jet submerged in a liquid. However, his numerical results 
pertain only to a Mach number of unity. The classic temporal instability analysis has been extended 
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Figure 2. Sketch of  the mathematical model. 

to a spatial instability analysis (Leib and Goldstein 1986; Zhou and Lin 1992; Li 1992), and the 
concepts of convective and absolute instability were established (Sturrock 1958; Briggs 1964; 
Monkewitz 1990). However most of the modern instability analyses focus on liquid-jet instability 
in a gas environment. Little research deals with gas jet instability in a liquid environment which 
is the topic of this paper. 

A simplified model is given here to investigate the stability of an isentropic, compressible 
gas jet injected from a circular cylindrical nozzle with radius a, into an unbound inviscid 
liquid environment. The gas jet is considered to be homogeneous, of uniform velocity profile, 
semi-infinite system. Gravity is negligible if the gas velocity is high and the gas inertia is dominant 
(figure 2). 

The conservation equations of mass and momentum for the gas and the liquid phase are 

~--P/+ V-(piV,) = O, [11 

[21 

where p is the density, Vi is the velocity vector, P is the dynamic pressure and index i = G, L denotes 
the gas or liquid phase. Taking the perturbations of the above equations, canceling the basic state 
and retaining only the linear terms, we have 

ao, U~ V" = - ~  ve; .  [31 

(D+ ~o, uo ~z)p/= -p,v.v;, 

where primes are used to designate the perturbations of the variables, Uo is the gas mean velocity 
and 5a~ is 1 or 0 depending upon if i = G or i = L. 

The linearized kinematic and dynamic boundary conditions are 

~ = ~ + 5o, Uo ~7' [5] 

[6] 

at r = a + t/, where ~/ is the interface displacement, r is the radial distance, V~ is the velocity 
component in the radial direction, 0 is the azimuthal angle and z is the downstream distance f rom 
the nozzle. S is the surface tension and n is the direction normal to the interface. P '  V' L, t are limited 



702 K. CHEN and H. J. RICHTER 

values when r ~ oo. Taking the divergence of [3] and then using [4], the following equation is 
achieved 

N + uc ~z p" = V~P" [71 

Assuming the change of gas pressure with respect to density is an isentropic process, we have 

OPt p6  2 , P~ = ~ =ccpc, [81 

where s is the entropy and cc is the sound velocity. Substituting [8] into [7], we get for the gas phase, 

N + Uc -~z P; = c~WP;; [91 

while for the liquid phase 

02P( .  
0t 2 - 0. [10] 

If both sides of  [5] are taken by (O/Ot)+ 6c~Uc(O/Oz), using [7], the kinematic condition will 
become 

(O )2 lOP[ [11] 
-~ + 6c~Uc q =  fi,. Or" 

The standard method of  normal modes is used to satisfy the linearized equations. Let 

P ~  = ~fiL U~pG(r)~exp[i(KZ + nO - f~z)]. [12] 

pc and pL are the respective dimensionless pressures. K and • are dimensionless wave number 
and angular frequency respectively and the integer n specifies the periodicity of the motion around 
the cylinder circumference. (R, Z,  ~) and ~ are defined as 

(R, z, ~) = (r, z, ~)/a, 

tUG 
z - [131 a 

Substituting [12] into [9] and [10] leads to the governing equations for the dimensionless 
perturbation pressure amplitudes 

{D 2 -+- R-ID - [n2R -2 + K 2 - M2(K - f~)2l}pG = 0, [141 

{D 2 + R-~D - [n2R -2 +/~]}pL = 0, [15] 

in which D = d/dz and M = Uc/cc. The corresponding boundary conditions at R = 1 are 

p L - - p c + W e ( K  2 + n  2 - 1 ) ~ = 0 ,  

Op~ 
f ~  - ~ = 0, 

Q(K - f~)z~ _ Op___q = 0, [161 
OR 
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where the dimensionless numbers are defined as 

S _ ~G 
W e - _  2 , Q - - = - .  

pL U~a pL 

The bounded solutions for [14] and [15] are 

pL = AK.(KR),  

pcBI.(2R). 

K.0 ,  1.0 are modified Bessel functions and 2is defined as 

2 = ~/I~ -- M 2 ( K -  f~)2. 

Substituting [19] into [16] yields 

A - f~2~ 
KK;(K)' 

( K -  n)2~ 
B =  Q 21;(2) 
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[17] 

[18] 

[19l 

[20] 

Finally, the dispersion equation is 

fFK.(K) O ( K ~ ) 2 r  t;~ _ We(1 - / ~  - n 2) = 0, [21] 
KK;(K) 21;(2) "" '"" 

where primes denote the differentiation O/d(2R). For  a given set of flow parameters We, Q 
and M, this governing dispersion equation gives the relationship of the dimensionless wave 
frequency f~ and the dimensionless wave number K. The dispersion equation will lead to Rayleigh's 
equation for a hollow jet in a liquid (Rayleigh 1879), if the density ratio equals zero and the 
axisymmetric mode is used. Moreover, in the limiting case that K approaches infinity, the dispersion 
equation [21] is reduced to the characteristic equation obtained by Taylor (1945) if viscous terms 
are omitted. 

3. NUMERICAL RESULTS AND ANALYSIS 

The dimensional perturbation expression in [12] is exp[i(kz + n O -  cot)]. The two cases of  
most interest are those in which either k or co is real. A wave is said to be temporal unstable if 
for some real wave number k, a complex co = cot + ie)~ is obtained with positive coi, which denotes 
growth in time of  a spatially periodic disturbance of infinite extent, co~ is called temporal growth 
rate. Oppositely, if k is allowed to be a complex number for a real frequency co, i.e. k = kr + k~, 
it is called spatial instability which describes the downstream evolution of  a constant-amplitude 
harmonic input at some starting position, and -k~ is called spatial growth rate. Gaster (1962) 
demonstrated theoretically the relation between temporal growth rate and spatial growth rate by 
integrating the Cauchy-Riemann relation. 

The axisymmetric mode (n = 0) is studied primarily in this research. The calculation results 
of  limited cases of  non-axisymmetric modes will be presented to compare with the axisymmetic 
mode. The classical Newton's method was used throughout the numerical calculation of  the 
dispersion equation. 

Figure 3 shows the dimensionless temporal growth rate f~ against the dimensionless wave 
number K for two different gas to liquid density ratios Q. The flow is in the subsonic region 
(M = 0.5). The temporal growth rate increases with increasing wave number. Increasing the density 
of  the surrounding liquid has a stabilizing effect by decreasing the growth rate in the subsonic 
region. The figure only includes a limited range of wave numbers. The nearly linear curve of  the 
temporal growth rate with an increase in wave number will level out and decrease when the 
wave number increases further. Figure 4 shows two cases of  temporal growth rate for different 
Weber numbers in the subsonic region. Increasing the Weber number will decrease the growth rate 
in the large wave number regions and this effect becomes more obvious as the wave number 
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Figure 3. Temporal growth rate versus wave number with different density ratios. 

4.5 

increases, which means surface tension has a stabilizing effect on the waves with short wave lengths 
in the subsonic region. 

The temporal growth rate versus the Mach number is shown in figures 5-7 for different density 
ratios, surface tensions and wave numbers. The temporal growth rate increases first as the Mach 
number increases in the subsonic region, reaches the maximum point where the Mach number 
approaches unity, and quickly reduces to vanishing values after that. The first two curves give the 
temporal growth rates for the density and the surface tension corresponding to the air-water system 
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Figure 4. Temporal growth rate versus wave number with different Weber numbers. 
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and air-mercury system, while a different dimensionless wave number K = 2re was used in the third 
curve for air-mercury. At the transonic region, a similar peak of temporal growth rate was obtained 
for all three cases. The theoretical study shows that the gas jet undergoes the most unstable 
situation when the Mach number approaches unity and the gas jet becomes temporally stable in 
the supersonic region. 

Figures 8 and 9 show the spatial growth rates of two cases, corresponding to the air-water and 
the air-mercury system. The tendency of the spatial growth rate approaching zero at the supersonic 
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1.6 

region is the same as that of  the temporal cases. The spatial growth rate undergoes a maximum 
value in the sonic region, then dramatically reduces to a vanishing value when the supersonic region 
is reached. A gas jet is always spatially unstable in the subsonic region and becomes stable in the 
supersonic region. I f  we write the downstream coordinate z as z = Vt -t- z0, it can be shown that 
an observer moving with velocity 110 = ao~,/o~krlk, = k0, will see the disturbance increase as exp(tr0t), 
where a0 is the maximum positive imaginary part  of  o~ for real k (Briggs 1964). d~r/dkr is also called 
group velocity. It  was calculated that the group velocity of  the air-water  system is much smaller 
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Figure 8. Spatial growth rate versus Mach number: air-water system. 
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Figure 9. Spatial growth rate versus Mach number: air-mercury system. 

than that of the air-mercury system under the same conditions. Because the group velocity denotes 
the propagation velocity of the disturbances, the effect of faster propagation velocity offsets the 
effect of faster disturbance growth of the air-water system, and the differences of spatially growing 
disturbances between air-water and air-mercury systems become much smaller. The importance 
of liquid density on group velocity is physically obvious, since the interface wave needs to overcome 
liquid inertia for propagation. 

Only results for the axisymmetric mode (n = 0) have been presented so far. It is argued that 
the non-axisymmetric modes may become important when the velocity differences through 
the interface become large. The effects of the first non-axisymmetric mode (helical mode, 
n = 1) have been recorded in experiments with high-speed liquid jets moving in the air (Hogt 
and Taylor 1977). Here we give the results of the temporal instability for the helical mode 
and the second non-axisymmetric mode (n--2). Figure 10 shows the comparison of the 
temporal growth rates of the axisymmetric mode and the helical mode respectively, for 
K = 1. For low jet velocity, the axisymmetric mode dominates. As the jet velocity increases, the 
temporal growth rate of the axisymmetric mode decreases rapidly in the transonic region, while 
the temporal growth rate of the helical mode keeps increasing until the Mach number reaches about 
2.0. That is, the temporal growth rate of the helical mode has a peak growth rate occurring at a 
Mach number much larger than the axisymmetric mode. Thus, the axisymmetric mode is 
dominated by the helical mode in the supersonic region. This is understandable if the velocity 
component of the supersonic flow in the helical wave direction is still subsonic while it reaches 
supersonic region for the axisymmetric mode. Figure 11 gives the comparison of the temporal 
growth rates of a higher non-axisymmetric mode of n = 2 and the axisymmetric mode. The 
temporal growth rate of n = 2 mode experiences a sudden change in the sonic region and goes to 
vanishing values in the supersonic region, and is less than that of the axisymmetric mode in the 
subsonic region. 

The fundamentals of the interfacial instability caused by pressure perturbation, namely 
Kelvin-Helmholtz instability can be conveniently explained by the concept of a vortex sheet, and 
its instability (Batchelor 1967). The compressibility evidently has an important effect on flow 
instability. Li (1992) gave a brief explanation of the effect of the compressibility based on the cortex 
theory. He argued that in the subsonic region, the flow field around accumulated points will have 
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density changes leading to acceleration of the process of vorticity accumulation. In the supersonic 
regime, density changes are opposite and consequently slow down the accumulation process. Thus, 
the gas-liquid interface will obtained the most unstable state in the sonic region, 

The kinetic energy of the gas jet can be calculated to give a further understanding of the effects 
of gas compressibility on the instability of a gas jet in a liquid. The time rate change of the kinetic 
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Figure 12. Time rate of kinetic energy change versus Mach number (air-water system). 

energy of a gas jet is equivalent to the work done by pressure fluctuations. Thus, 

d(KE) _ 1 f f  dt T, P~u' dz, [22] 

where u' is the component of V~ in the direction of z and L is the wavelength. Substituting the 
previous analysis results into [22] will eventually result in 

d(KE) 1 _ 3 ~ _mef,-~I0(2)(K- fl)2"~ 
dt - ~a 2pLU~rl?)~']ic '~g  2--~,)'~) ~" [23] 

The results of  the calculations are shown in figure 12. The time rate change of kinetic energy 
increases as the Mach number increases in the subsonic region, indicating the growing instability, 
and reaches a maximum value near the sonic point where the jet is most unstable. Then the time 
rate change of  kinetic energy quickly decreases in the sonic region and becomes negative at some 
point slightly larger than a Mach number of  unity. The kinetic energy keeps changing until at 
some point in the supersonic region there is no change of kinetic energy. The work done by the 
gas pressure perturbation thus has a destabilizing effect in the subsonic region and has a stabilizing 
effect in the supersonic region. 

In order to study the essential behavior of  a system evolving and further to give a fundamental 
explanation of the phenomenon of  transition from bubbling to jetting through the instability 
theory, the absolute instability should be studied. A pulse disturbance that is initially of finite 
spatial extent may grow in time without limit at every point in space (an absolute instability) 
or it may propagate along the system so that its amplitude eventually decreases with time at any 
fixed point in space (a convective instability) (Briggs 1964). The temporal instabilities found in 
the subsonic region does not mean that the jet will break up immediately at every point. The 
disturbances may be convected away downstream, thus the jet may break up some distance from 
the nozzle, which means jetting may still exist. A common criterion (Monkewitz 1990) to distinguish 
between absolute instability and convective instability is that absolute instability occurs at a 
saddle point. This corresponds to a double root of  k from the dispersion equation on the complex 
mapping plane if coo.~ > O. If ~Oo.~ < O, then convective instability occurs where o denotes the 
saddle point. To apply the criterion, the dispersion equation has to be solved for the entire range 
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Figure 13. One pair of root loci indicating absolute instability in the subsonic region (air-water system, M = 0.5). 

of real frequencies with varying ~o~, i.e. the mapping operation must be done for the whole complex 
plane. 

The calculations were first done in the subsonic region. Giving various real parts of f~, the root 
locus was traced in the K-plane as the positive imaginary parts of fZ were varied. Several root pairs 
were found. The most important root pair shown in figure 13 is the one closest to the real K axis. 
The loci of the roots coming from the lower half-plane represent the downstream response of 
an impulse source, and those coming from the upper-half plane correspond to the upstream 
response of the impulse source. The loci from the lower half-place cross the real axis indicating 
an amplifying wave for the loci labeled l, 2, 3 corresponding to ~r >/0.04. However, for the loci 
labeled 4, 5, 6 corresponding to ~, ~< 0.039, the wave evanescent because the loci cross over into 
the upper half-plane and turn around to end up back on the real axis when f~,= 0. The 
dimensionless group velocity d~/dk is negative for the resulting evanescent wave even though it 
represents a downstream propagating wave. This breakdown of the concept of group velocity was 
discussed by Briggs (1964). l h e  two loci of the roots pinch at some point fZl > 0 to form a saddle 
point signifying the nature of the absolute instability. The other root pairs do not cross the real 
axis when imaginary parts of ~ go from a positive value to zero, and no saddle points were found 
in these root pairs. However, the coupling roots in these root pairs first separate further as the 
Mach number approaches unity after the sonic region is reached. They converge together quickly 
at the real axis to form double roots. This behavior was referred to as a 'direct resonance' by Akylas 
and Benny (1980) who showed that it can increase the importance of  the nonlinear effects. 

The saddle point becomes deformed when the Mach number approaches unity, and no saddle 
points were formed in the supersonic region. Thus, the transition from absolute instability to 
non-absolute instability is observed numerically to fall within the transonic region. This change 
in local instability, that an initial disturbance will grow both temporally and spatially in the 
subsonic region and will become neutral or stable in fixed positions in the supersonic region, might 
help to explain the observed phenomenon of the transition from bubbling to jetting occurring at 
the transonic region. It is interesting to note that this transition from absolute instability to 
non-absolute instability is opposite to a liquid jet in a gas environment, where the transition was 
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found from convective instability in the subsonic region to absolute instability in the supersonic 
region (Li 1992). 

4. DISCUSSION 

Only the axisymmetric mode was studied in the above absolute instability analysis. Since no 
saddle point was found in the supersonic region and also there is no root loci across the real axis 
in the supersonic region, stable waves are assumed in the supersonic region which is also consistent 
with the previous calculations of temporal and spatial instabilities. The convective instabilities were 
excluded in the supersonic region. As it was first pointed out by Sturrock (1958), there is a very 
close connection between the concepts of amplifying waves and convective instabilities. However, 
as described earlier, some non-axisymmetric modes may become dominant in the supersonic 
region and the gas jet may not reach the stable state. The physical phenomenon of droplet 
entrainment and final gas jet breakup at some downstream distance indicate that amplifying waves 
may actually exist in the supersonic region. It is important to check in the supersonic region, 
whether amplifying waves (convective instabilities) exist for non-axisymmetric modes. It has been 
pointed out previously that in the sonic region, non-linear effects become important, thus 
non-linear analysis would be necessary to give more details of fluid behavior in the sonic region. 
Chawla established a criteria for the effectiveness of linearization as the wave velocity is 
not negligible compared to the gas velocity. Li (1992) gave the mathematical condition for the 
validation of the linearization by comparing the size of neglected nonlinear terms to that of the 
leading linear term. 

We have not included the viscous effect of the surrounding liquid. This viscous boundary layer 
may become unstable and generate shear waves. The shear waves could participate with the 
pressure fluctuation and capillary force to bring about instabilities. This effect becomes pronounced 
when the wave number becomes so large that the wave length is comparable to the shear layer 
thickness. Li (1992) gave a simple evaluation of the shear layer effects based on the consideration 
of a simpler linear velocity profile with uniform density 

u = l ,  y6 

u=y/6 ,  6 > y >  - 6  

u = - l ,  y6, [241 

where 6 is the thickness of the shear layer. For short waves that k6 > O(S/pG6)>> 1, shear layer 
effects is important. For O(S/pG6) > k6 >> 1, surface tension is dominant. Assuming a shear layer 
has the thickness 6 in the order of 10 -3, the reliable range for this inviscid model is approximately 
k < 10 4. If  the gas radius has the order of 10 -2 then K < 10 2. Our calculations fit in this range. 

5. CONCLUSION 

The phenomenon of the transition from bubbling to jetting in gas injection through a submerged 
nozzle into a liquid has been studied in view of the instability of a gas jet in a liquid. A simple 
model of uniform-velocity profile, a semi-infinite, axisymmetric gas jet in an inviscid liquid was 
established and the dispersion equation was solved numerically. For the axisymmetric mode, both 
temporal and spatial growth rates of the disturbances increase with increasing gas velocity in the 
subsonic region. There is a peak of the growth rate where the Mach number approaches unity, 
and the growth rate quickly reduces to zero after that, which indicates interfacial waves reach 
the most unstable state in the sonic region and become temporally and spatially stable in the 
supersonic region. For long waves, the first non-axisymmetric mode becomes dominant in the 
supersonic region and the gas jet may not become temporally stable in the supersonic region. 
Absolute instability was found in the subsonic region while there is no absolute instability in the 
supersonic region. Thus, in the subsonic region, small disturbances will grow immediately 
in any position without limitation causing the jet to break up and bubbling occurs. In the 
supersonic region, small disturbances will finally become evanescent or be convected away 
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downstream so that their amplitudes eventually decrease with time, and the gas jet remains stable. 
Thus, jetting exists in the supersonic region and the transition from bubbling to jetting occurs in 
the transonic region. 
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